

Investor Open Day 2017

The Olde House, Cornwall, 25 October 2017

Scott McGregor, Chief Executive Officer

redT energy storage machines

Develops and Manufactures Liquid Energy **Storage** Machines for **Commercial & Industrial Applications**

UK-Based, Public Company (red:L), Office

100% Depth of Discharge

Long Lifespan

Modular & Scalable

Low Levelised Cost of Ownership

- locations in UK, EU and Africa
- 17 years of development, now proven technology in the field

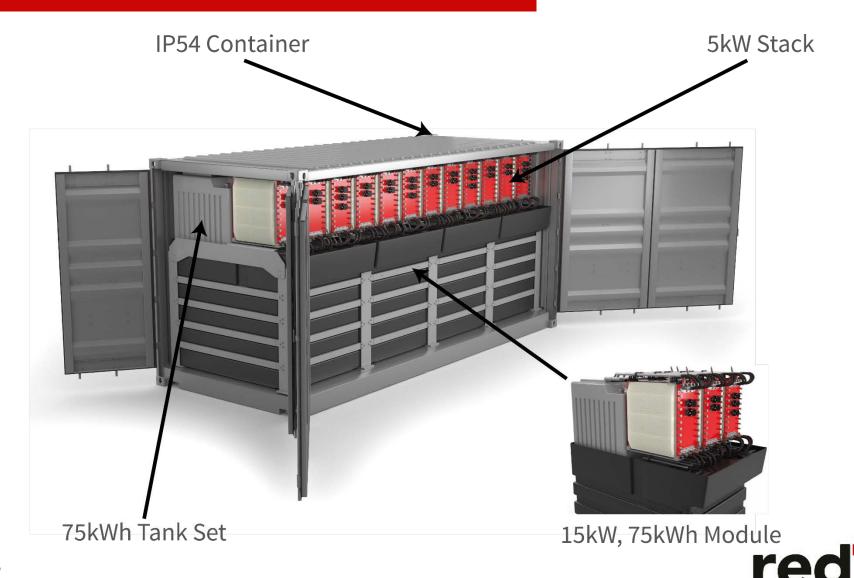
Remote Monitoring

Safe

Low Maintenance

Environmentally Friendly

- > 4MWh machines across UK, EU, Australia & **Africa**
- Lowest Cost (<\$500/kWh) Vanadium Energy Storage Machines available globally.



Jabil Circuit inc. has approx. x7 the global manufacturing floorspace of Tesla's Gigafactory

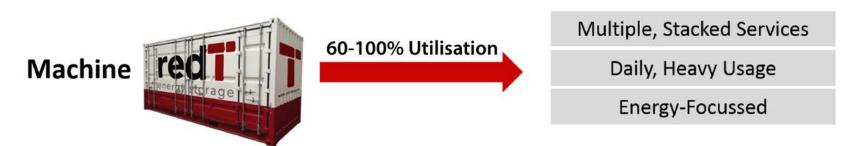
redT Energy Storage Machine

energy storage

Changing Perceptions in the Energy Storage Market

 The wider market is only beginning to understand power vs energy from a use case perspective

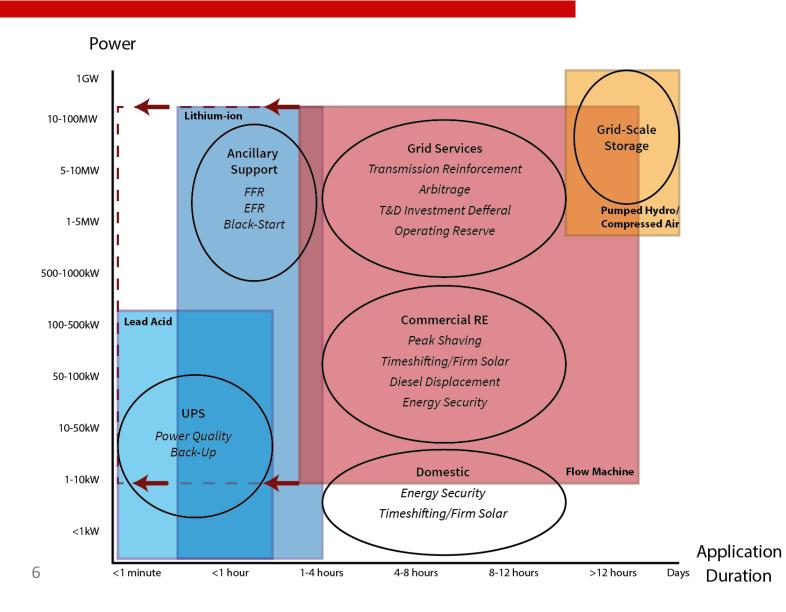
- Incumbent technologies (Lead, Lithium) are power-centric. Lots of power for a short period of time.
- Flow machines are energy-centric. Provide power over a sustained period in line with your use case


energy storage

It's a Machine! Not a B*****!

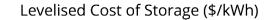
Ideal for:

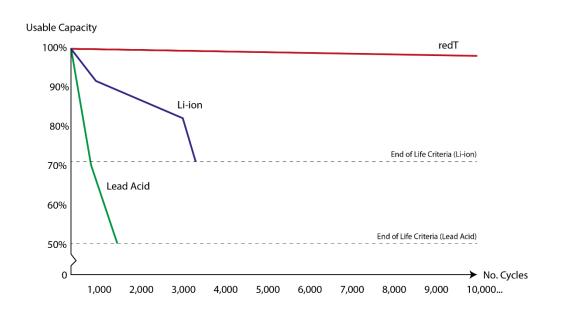
Frequency Response Tenders – Good return in short run, but not sustainable long term

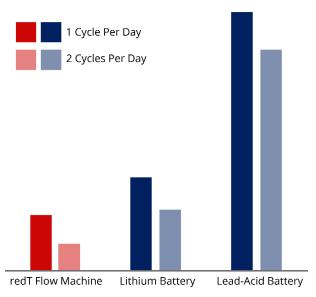


Ideal for:

Multiple, stacked services – Financeable, Infrastructure Asset with good long term returns




The Energy Storage Market



Non-Degrading Energy Storage

- Technology does not degrade like conventional lithium or lead-acid batteries
- Machine can be cycled heavily every day without significant capacity fade
- As such, redT machines operate for >25 years matching the life of your project
- This gives market-leading LCOS results for energy infrastructure

Grid Connected Renewables: C&I Base Case

2.

3.

4.

5.

UK C&I Min. 100kW Peak Demand

Min. 150kWp Solar Grid-Connected

60kW, 300kWh Machine

Increase Self Consumption Increase own utilisation of generation. Save m

Increase own utilisation of generation. Save money by reducing amount of energy imported from grid.

Re-negotiate Utility Contracts

Avoid importing energy at peak times allows customer to renegotiate energy supply agreement

Contracted Grid Services (Fixed)

Provide contracted services to the local grid on a fixed, contractual basis – receive utilisation and availability payments

Merchant Trading (Variable)

Perform arbitrage and energy trading activities using an energy storage asset for high returns

Additional (not-quantified)

Hedge future power prices, Energy security, Energy Independence, additional policy upside

Key Project Financials

7-10 Years

Project Payback

10-17%

Internal Rate of Return (Unlevered)

54MWh/Year

Additional PV Generation Utilised

Base Return

Semi Merchant

Merchant

Demand for redT in the market

There is strong market demand now......

Grid Connected C&I - Renewables + Storage - >10% IRR

Certain geographies now economic; UK, Australia, Germany, USA ...Timeshifting for self consumption, contracted services and merchant revenues

Market Size

\$65-103bn

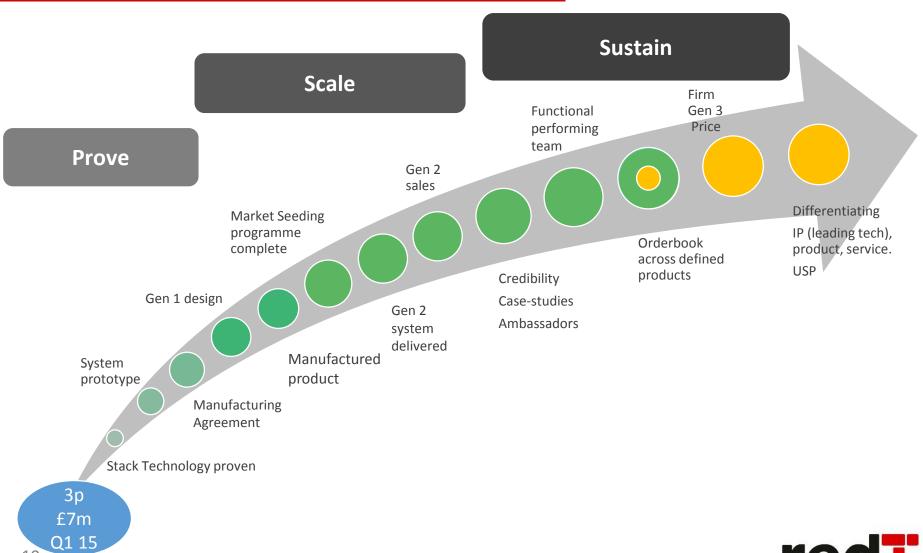
Off-Grid & Weak Grid - ~30% IRR, 3-5 year payback

Diesel energy production cost \$0.50 to \$1 per kWh. Solar desired in off-grid, doesn't work without industrial heavy cycling storage, solar + flow machine cost \$0.20-0.30 per kWh (figures indicative of South African market)

>\$27bn

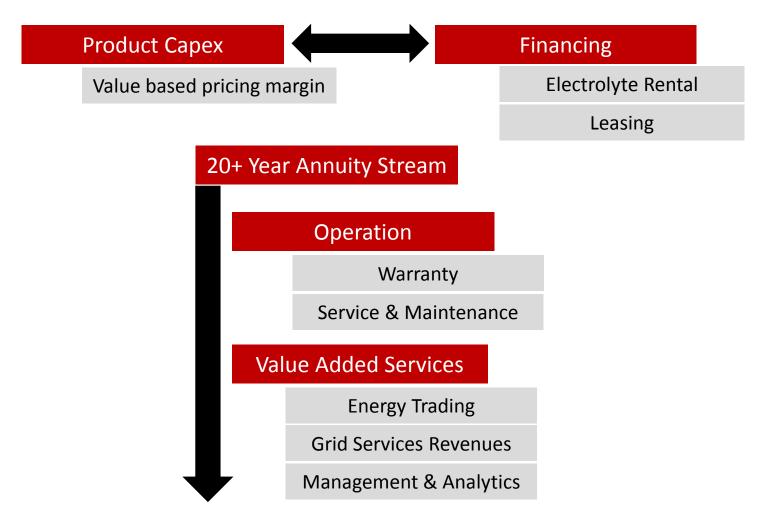
Renewables + Storage Grid Projects - Private wire PPA

Decentralised, large scale renewables projects (Solar, Wind, Tidal etc.) supported by large scale, flexible energy storage platform asset.


Large Scale Grid Projects – Trading and Grid balancing

For long duration grid services at national / regional level (>3hours) as base case, then can perform all grid services at no incremental cost, including energy trading. Policy to price services (not subsidies). Works now in Germany & USA, UK viable in near-term

\$32-50bn (US Market only)



Sustainable Equity Value

redT Revenue Business Model

Recent Achievements

- 14 Unit Order from Botswana based customer
- 1st Vanadium-Lithium Hybrid 1MWh System sold into Australian Market
- Expansion into new markets through strategic distribution partners 12 Units and 300 unit pipeline engaging competitor's pipelines
- Multiple unit orders within the UK and EU
- Team Expansion +97% y-o-y inc. Senior Hires from key competitors
- Diversified manufacturing small and large volume production
- Launched Centrica Cornwall 1MWh flagship project

Commercial Update

	September 2017	April 2017	% Change
Production & Deployment	16 Units	9 Units	+78%
Orders	16 Units (+ 12 Distributor Committed)	5 Units	+220% (+ 12 units committed)
Final Stage Customer Selection for 2018 delivery	~€16.5m (205 Units)	~€6.5m (101 Units)	+154%
Active Customer Pipeline	~€323m	~€246m	+32%

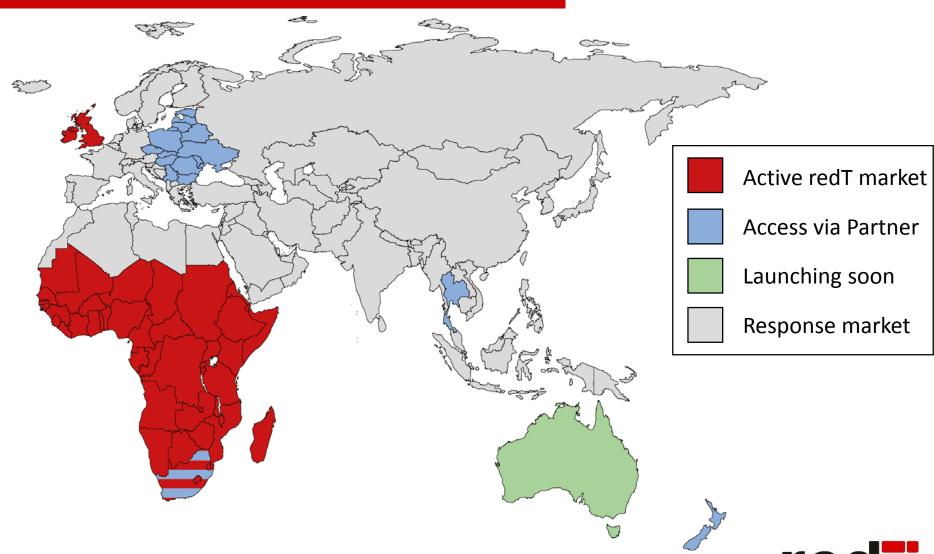
The Olde House – 1MWh Project

Case Study: The Olde House, Cornwall

Sunrise

Off-Peak Pricing Period

10% Internal Rate of 34% Reduction in 1822% Increase in **Total Imported** Return (IRR) **Utilisation of On-Site Electricity** (Unlevered) Generation Revenue/Savings (£) Site Details Merchant (non-contracted) Grid Revenues £30,000-50,000 ontracted Grid Revenues Savings on Electricity Imports 600 Acre Farm & Holiday Retreat, Cornwall, UK otential Export Revenues Peak Demand: 130kW, Average Demand: 30kW £20,000-30,000 350kWp Solar Panels (Grid-Connected) £10,000-20,000 90kW, 1,080kWh redT energy storage system Year 3 Year 5 Site Demand not met by PV Import from Grid Discharging Storage Electricity Input/Output (kW) Charging Storage from PV **Export to Grid**


Midday

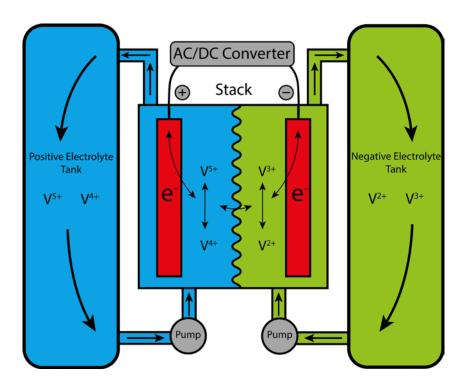
Peak Pricing Period

Sunset

Expansion into New Markets

redT – Business Outlook

- Focussed on implementation and deployment of key customer sites (Olde House, RNLI etc.)
- Final stage of redT team build-out
- Key segments & product differentiation
- Building orderbook for 2018
- Gen 3 development, cost and specifications

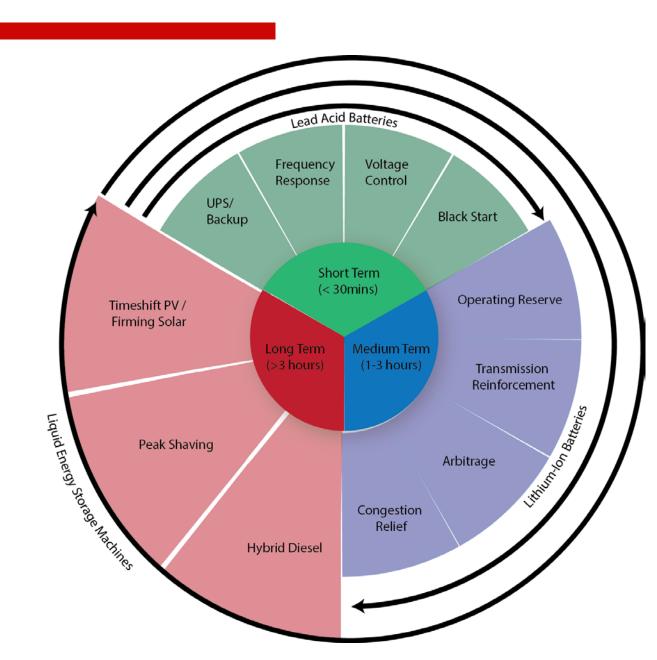

Appendix

Liquid Energy Storage

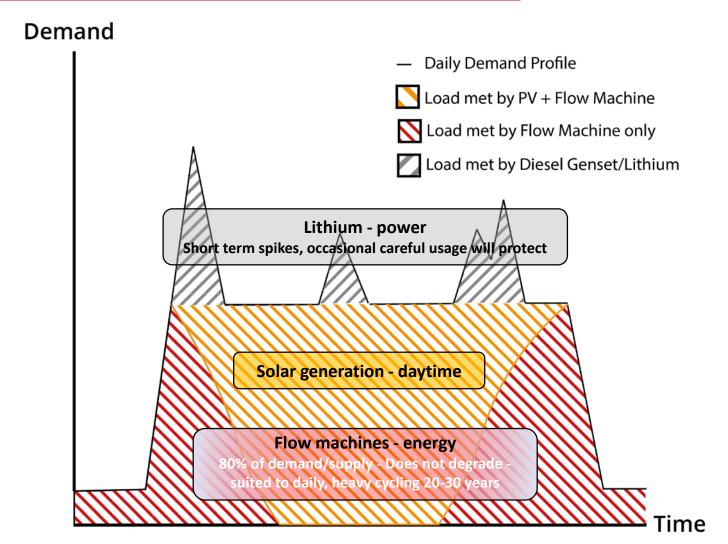
- Conventional batteries have fixed power and energy locked together in the cell – redT energy storage machines are modular and decouple power from energy – sized to your exact needs
- Our energy storage machines use liquid electrolyte contained in tanks outside the stack and pumped through it – like a car engine and fuel tank – albeit, with fuel that does not degrade or run out.
- Long duration storage, with 100% depth of discharge functionality that doesn't deteriorate over time

VIDEO: How redT's Technology Works

Flow vs Conventional


redT Energy Storage Machine				
	Industrial-Scale, Medium & Long Duration Stationary Energy Storage Applications			
	Up to 25 year life – Low Levelised Cost of Storage (LCOS)			
	100% Depth of Discharge without Degradation			
	Safe – No Risk of Thermal Runaway			
	Charge is retained indefinitely with negligible self-discharge over time			
	Electrolyte is 100% reusable and can be reused over and over again			
	Power and Energy requirements can be sized independently for best fit			
	Optimal Performance with daily usage, coupled with renewables			

Conventional Batteries (e.g. Lithium, Saltwater, Lead)			
	Short Duration, Residential & Small Scale Applications		
	Deteriorates with every cycle, need to replace after ≈5,000 cycles @ 50% discharge		
	Discharge beyond 30-50% causes damage, requiring systems to be oversized		
	Risk of Thermal runaway, requiring safety systems to be installed		
	Fully Charged systems will self-discharge over time		
	Lithium-Ion systems are not widely recycled & must be disposed of safely		
	Power and Energy Components cannot be separated		
	Most effective for occasional use and back-up functions		



High System Utilisation

- Different technologies are better suited for providing certain services
- Lead Acid Short term
- Lithium ion –
 Short/Medium term
- Flow Machine Long Term + Additional Short and medium term services

Hybrid Energy Storage

H1 2017 Financial Highlights

Financial results for the group in **H1 2017** were in line with overall management expectations

- **€13.2m** in available cash (FY 2016: **€**2.8m)
- Loans and borrowings €Nil (FY 2016: €Nil)
- Revenue for the period €4.5m (H1 2016: €4.5m) (incorporating Camco activity)
- EBITDA loss for the period €3.2m (H1 2016: loss €2.2m)
- redT business reflective of the strategic investment and continued growth of the business
- Camco business comprising the legacy business operations of Africa, US and Carbon continues producing positive contributions to the Group

redT 15-240 units being tested at PNDC facility, Scotland

redT 5-40 units at customer project in Johannesburg, South Africa

redT 15-75 Machine being prepared for shipping to Johannesburg, South Africa

Internal view of redT 15-75 machine performing a charge/discharge cycle

redT 15-75 on site in South Africa

Siting and commissioning of redT machine

redT's 1MWh site at The Olde House

